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The Era of AIGC
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This is an AIGC (Artificial Intelligence Generated Content) era. There are
many generative models now. Many popular applications.



Text-to-Image (T2lI)

T2l systems interpret natural language prompts and generate corresponding visual content.

Text to image conversion
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Personalized Text-to-lmage — Concept

Concept is considered as a personalized T2l
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Gal R, Alaluf'Y, Atzmon Y, et al. An Image is Worth One Word: Personalizing Text-to-Image Generation using Textual Inversion. The Eleventh
International Conference on Learning Representations.



Personalized Text-to-Image — Concept

Concept is considered as a personalized T2I

Input images gettang a hatecut

DreamBooth

Ruiz N, Li Y, Jampani V, et al. Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2023: 22500-22510.



Personalized Text-to-lmage — Concept

Embedding Space

What is the concept?

€ The summary and abstraction of the essential attributes of things is
the basic unit of people's cognition of things.

€ A mode of thinking that reflects the unique attributes (inherent
attributes or essential attributes) of things.

What are concept-driven generative models?

@ "Concepts" are explicitly introduced as high-level control and
interpretation units in the generation process, making the generation
more precise, flexible and interpretable.

Why do image generation models need concepts?

@ Limitations of natural language: Natural language cannot accurately
describe everything.

€ Concepts serve as a supplement to natural language in image
generation models and can provide high-level and precise control.



Personalized Text-to-lmage — Concept
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* Limitations of natural language: Language cannot describe everything
 Concept as a supplement to natural language: Concepts can be reproduced in T2|
 There are two processes: Concept extraction and concept generation

 The information representing a concept is stored in the concept embedding vector



My Research Overview

Trustworthy AIGC as background
Concept is a summary and abstraction of things

Concept in
Trustworthy AIGC
Malicious Concept . - Solution
Detection Explainability Evaluation
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| planned four parts for generative concept research. Each has its own
corresponding work, which will be introduced later.



The Work 1

Malicious Concept Detection



The Risk

Malicious concepts include violence, blood, pornography, etc.

a very cute corgi o

Imagined Actual

Generate image with
malicious content

Concept embedding vectors are non-visual

Malicious concept: Concept embedding vectors
are extracted from the NSFW input images

Understanding concept embeddings with text
descriptions and example graphs

This description and concept embedding
vector relationship is fragile and there is a risk

Malicious concept embedding vectors are
embellished and disguised as normal ones



The Dilemma

“a photo of

A
N Malicious? Generated
J at least once

* Generating an image at least once can determine whether it is malicious
* Concept generation image judgment has the problem of generating malicious contents

* |nefficiencies and risks



Concept QuickLook
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Concept QuickLook
Class Rcls model
Embedding space
* Extract concept vector Search embedding space and find
* Encoding concept class the vector that minimizes distance

* The concept of NSFW is also in the embedding vector space



Work Type
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Work Summary

» This work first defines malicious concepts in the concept sharing process and proposes a solution,
called Concept QuickLook, to rapidly detect malicious concepts.

» The work analyzes the generation mechanism of the concept generation model and the entire concept
file sharing process. It finds that the embedding vectors in the concept files are the primary factor

controlling the generated topic content and can be used to detect whether the personalized generated
content is malicious.

» Two operating modes are designed for the QuickLook model: concept matching and fuzzy detection.
These two modes are demonstrated to effectively meet the requirements for malicious concept
detection in current concept sharing platform scenarios.

» Extensive experiments are conducted, including effectiveness evaluation, baseline comparison,
manual scoring, and robustness testing. The results demonstrate that the proposed method can
identify malicious concepts without requiring a single generation step, effectively protecting the
security of concept sharing platforms and their users.



Detection Results
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Visual detection results of Concept Matching


演示者
演示文稿备注
As mentioned before, concept embedding vectors are non-visual. The concept example diagrams here are used to show what the concepts actually represent and are visual benchmarks.


Detection Results
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Statistical distribution results of Concept Matching



Detection Results

Confirmed
concept diagrams

Concept class
consistency

Unknown concept
example diagram
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Visual detection results of Fuzzy Detection



Detection Results
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Statistical distribution results of Fuzzy Detection



The Work 2

Understanding Concept-Driven Diffusion
Model with Uncertainty



Entropy
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The process of entropy increase

The process of entropy increase is from order
to disorder

The anti-entropy process is from disorder to
order

Certainty flows with entropy

The forward process of the diffusion model
increases entropy, while the reverse process
decreases entropy



Understanding Concept-Driven Diffusion Model with Uncertainty

Prompt Concept embedding vector

el ‘ Generation path guidance am - Latent space constraint

Introduction of certainty

Concept image generation is a process of certainty introduction

Concept embedding vector restrict the search space within the latent space to regions near
the target concept

Prompt explicitly indicate the generation direction of the model through textual information



Understanding Concept-Driven Diffusion Model with Uncertainty

Concept Anti-entropy

* Concepts are transferred in the form of embedded vectors, which control the features and
direction of the target distribution during the generation process.

 Through progressive denoising, new data representing the target concept are generated from
pure random noise.

* This process reduces uncertainty and enhances consistency, reflecting the transfer of anti-
entropy from the original images to the embedding vectors and ultimately to the concept
generated images.



Understanding Concept-Driven Diffusion Model with Uncertainty

_______________________
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Hypothesis 1. The entire CAC from concept extraction
through concept transfer to concept generation is a process

L
VIR
‘/"“)

1 H— : > of anti-entropy transfer (Sec. IV-A for Hypo. 1).
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thereby reducing the uncertainty of generation (Sec. IV-B for

Concept application cycle (CAC) Hypo. 2).

Concept extraction, concept transfer, concept generation



Concept Unlearning

Unlearning refers to actively removing the influence of certain specific data or knowledge from a
trained model so that the model no longer relies on this data or knowledge in subsequent tasks.

e Treat private data as a concept to remove
biased or discriminatory knowledge in

generative models Application:
 Compliance requirements for Trustworthy e Copyrightissues involving unauthorized
AIGC data for Al training (e.g., artist works)

 Complying with the right to be forgotten e Evaluation: Verifiable concept unlearning



Concept Unlearning

Unlearning refers to actively removing the influence of certain specific data or knowledge from a
trained model so that the model no longer relies on this data or knowledge in subsequent tasks.

Stable Diffusion

Forget-Me-Not

Zhang G, Wang K, Xu X, et al. Forget-me-not: Learning to forget in text-to-image diffusion models. Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2024: 1755-1764.



Work Summary

» Theoretical Framework of the Concept-Driven Diffusion Model

* Introducing an uncertainty perspective, this work constructs a theoretical framework
based on anti-entropy to systematically model the extraction, transfer, and generation of
concepts.

* Two key hypotheses are proposed and theoretically verified: the anti-entropy transfer
process of concepts and the deterministic introduction of concept generation.

* This framework reveals the underlying mechanisms of concept information flow and
uncertainty evolution, providing a novel theoretical perspective for understanding the
concept-driven diffusion model.



Work Summary

» Concept Uncertainty Quantification Method Based on Anti-Entropy

* This work proposes a unified approach to quantifying semantic and structural uncertainty,
supporting multi-granular analysis at both the representational and cue levels.

* This framework can serve as a quantitative tool for assessing the stability, controllability,
and generative behavior of concepts in concept-driven diffusion models.



Work Summary

» Application of Frameworks and Methods in Concept Unlearning

* This work applies the proposed theoretical framework and uncertainty quantification
method to the concept unlearning task, designing and implementing a comprehensive
experimental pipeline.

* Through extensive evaluations across different concept representations, generation
settings, and unlearning strategies, the proposed framework and method demonstrate
their adaptability and practical value.

* This work provides empirical support for evaluating the safety and controllability of
generative models.



Results
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Results
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The Future



Future Work Plans
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The Ladder of Causation

Counterfactual learners, on the top
rung, can imagine worlds that do not
exist and infer reasons for observed
phenomena.

Tool users, such as early humans, are
on the second rung if they act by
planning and not merely by imitation.

Most animals, as well as present-day
learning machines, are on the first
rung, learning from association.
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We can also use experiments to learn the effects of interventions, and presumably this is how babies acquire much of their causal knowledge.


Future Work Plans

Causal Concept Diffusion  Counterfactual Generation

Concept Concept identity

Source image Face mask generative image injection

Concept Concept identity
generative image Injection

Source image

||||||||||

Input Image Face Mask
|
. " [
i &
- b
r N i -
J W
B/ ke
b
AG
Face Mask Textual Inversion Concept
|
| v‘ D

The background AN .
area is also changed * Preserving context

 Limiting the impact of identity embedding

By treating identity embedding as a causal intervening variable and intervening only in the latent space of the
face, we can achieve local, controllable, and explainable counterfactual generation in the generated image.




The End

Thank You
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